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Abstract A robust nonsingular fixed time terminal sliding mode control scheme with a time de-

lay disturbance observer is proposed for atmospheric pollution detection lidar scanning mechanism

(APDL-SM) system. Distinguished from the conventional terminal sliding mode control methods, the

authors design a novel fixed-time terminal sliding surface, the convergence time of sliding mode phase

of which has a constant upper bound that is designable by adjusting only one parameter. Moreover,

in order to overcome the problem of unknown upper bound of lumped uncertainty including model

uncertainty, friction effect and external disturbances from the port environment, the authors propose

a time delay disturbance observer to provide an estimation for the system lumped uncertainty. By us-

ing the Lyapunov synthesis, the explicit analysis of the convergence time upper bound are performed.

Finally, simulation studies are conducted on the APDL-SM system to show the fast convergence rate

and strong robustness of the proposed control scheme.
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1 Introduction

Emissions from ships have been recognized as a significant contributor to the atmospheric
environment in coastal areas[1, 2]. Exhaust pollutants such as SO2, NOx, particulates and car-
bonaceous compounds would adversely impact regional air quality, global climate and human
health[3–5]. With the rapid development of the maritime industry, the impact of exhaust pollu-
tants from ships on air quality could become more serious in the near future[6, 7]. Atmospheric
pollution detection lidar (APDL), which is developed based on the differential absorption laser
radar technology, could provide an accurate and fast directional monitoring for atmospheric
pollution via a long distance. With the assistance of APDL-SM (i.e., the scanning mechanism
of APDL), we can scan the atmospheric area over the ship nozzle and then obtain the thermal
map of the exhaust plume. Therefore, in order to track the long-range and small-area targets
(i.e., nozzles), the control problem of the azimuth and pitch angle of the APDL-SM arises.

The main difficulty is trajectory tracking control with high accuracy and fast response un-
der the issues of high nonlinearity, coupling dynamics, modeling uncertainties, and external
disturbances effect. APDL-SM is a typical machinery with two rotational degrees of free-
dom, the control schemes of which have been investigated intensively, such as event-triggered
control[8, 9], adaptive control[10], neural network methods[8, 11], fuzzy logic control[12–14], and
sliding mode control (SMC)[15–27]. Adaptive event-triggered neural control problem for non-
affine pure-feedback nonlin-ear multiagent systems with dynamic disturbance, unmodeleddy-
namics, and dead-zone input was investigated in [8] by using radial basis function neural net-
works. To solve the leader-following consensus problem for a class of strict-feedback multiagent
systems with unknown disturbances and input saturation under a directed topology, a dis-
tributed event-triggered control approach based on disturbance observer was proposed in [9].
For robot finger dynamics, [10] proposed a novel design method for adaptive tracking control.
Han, et al.[12] presented a funnel dynamic surface control combined with fuzzy echo state net-
works for the prescribed tracking performance of a strict feedback multi-input-multi-output
nonlinear dynamic system.

Among the aforementioned control methods, SMC has attracted significant attention due
to its excellent properties such as strong robustness against parameter changes, model uncer-
tainties, and good rejection of external disturbances[17–20, 22]. In [18], a curved path following
control algorithm combining sliding mode control (SMC) with the vector field (VF) strategy for
miniature unmanned aerial vehicles is developed. [20] proposed three kinds of sliding mode con-
trollers to solve the problem of multi-agent formation control. Gan, et al.[22] proposed a sliding
mode control with perturbation estimation coupled with an inverse hysteresis compensator for
the motion tracking control of a microposition system with piezoelectric actuation. However,
conventional SMC laws are discontinuous and the high-frequency control switching may cause
the well-known chattering phenomenon[23, 24]. A robust guidance law based on sliding mode
control is formulated in [23], in which the boundary of target maneuver is needed and the chat-
tering phenomenon inevitably exists. In addition, conventional SMC can only guarantee the
asymptotic convergence of states, system’s states cannot converge to zero in finite time.
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To overcome this problem, terminal sliding mode control (TSMC) approach was designed to
achieve the finite-time convergence of system dynamics[25]. An adaptive sliding mode control
was proposed in [21] such that the sliding surface in the state-estimation space can be reached
in a finite time. [28–30] applied non-linear switching manifolds to achieve a fast or finite-time
convergence property without imposing strong control force and obtain a finite-time mechanism.

The terminal sliding surface was a nonlinear function of the tracking error and its deriva-
tives, on which the finite-time convergence could be accomplished. Additionally, to eliminate
the singularity and accelerate the speed of convergence of TSMC, the nonsingular terminal
sliding mode control (NTSMC) and fast nonsingular terminal sliding mode control (FNTSMC)
were proposed and achieved successful applications[31–33]. The inherent dynamic properties of
the fast terminal sliding modes were explored, and conditions to ensure its applicability for
control designs were obtained in [31]. [32] studied fault-tolerant control designs based on non-
singular terminal sliding-mode control and nonsingular fast terminal sliding-mode control, such
that the system states reach the control objective point in a finite amount of time. Zheng,
et al.[33] proposed a robust motion control method for a linear motor positoner by using fast
nonsingular terminal sliding mode control (FNTSMC). Compared with the conventional non-
singular terminal sliding mode control, the FNTSMC can guarantee a faster convergence rate
of the tracking error in the presence of system uncertainties which include payload variations,
friction, external disturbances, and measurement noises. However, these finite time control
methods have a common weakness that the convergence time is affected by the initial state,
which means that the control performance of the system might be weakened greatly if the ini-
tial state is far away from the sliding surface. Therefore, different from the finite time control
methods, the fixed-time control method can guarantee that the convergence time is uniformly
bounded by a constant independent of the initial states. [34] modified the second order sliding
mode control algorithms by providing global finite-time stability of the closed-loop system, and
allowed to adjust a guaranteed settling time independently on initial conditions, which achieved
fixed-time stability.

However, there are few results in the machinery tracking control by fixed-time control meth-
ods. Meanwhile, considering the uncertainty existing in the system, many studies have used
the adaptive control method to approximate the uncertainty. For a class of output feedback
nonlinear systems with unmodeled dynamics and output constraint, [35] proposed two dynamic
surface control design approaches to solve the adaptive control problem. To design control
which renders approximate constraint following, adaptive laws are constructed in [36]. The
controls are then based on the adaptive parameters. [37] proposed an integral sliding mode for
trajectory tracking control of robotic manipulators by combining integral sliding mode control
and adaptive twisting control algorithm. However, the adaptive control usually needs a long
time to stabilize, which might cause the divergence and collapse of the system when applied to
the actual APDL-SM system.

As one of the well-known practical nonlinear control strategies for uncertainties, time delay
control (TDC) employs a time-delayed estimation (TDE) technique to eliminate the unmodeled
dynamics, intractable nonlinearity, and external disturbances. [38] studied the the robustness
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problem in time-delay control (TDC) for robot manipulators by enhancing the TDC with a
compensator based on internal model control (IMC). A time delay estimation based on general
framework for trajectory tracking control of robot manipulators is presented in [39]. The con-
troller consists of three elements: A time-delay-estimation element, an injecting element that
endows desired error dynamics, and a correcting element. However, in the conventional TDC,
the velocity and acceleration signals are calculated by backward differentiator technique, which
achieves a lower estimation accuracy due to differentiating the measured position signals[40–42].
To deal with this problem, Van, et al.[43] and Brahmi, et al.[44] used second-order exact dif-
ferentiation (SOED) to estimate the velocity and acceleration; however, the SOED can only
achieve finite time error convergence, which means that the estimation time of system states
rely on the initial states. When the initial states of estimation error are far from the original
point, the estimation time increases and consequently the tracking performance deteriorates.

In actual application scenarios, APDL-SM is desired to track the chimney of the target ship
for exhaust monitoring as quickly as possible and unacted on uncertain factors, such as the
model uncertainties, wind speed, wind direction, atmospheric state and other environmental
factors. Motivated by actual demands and the attractive attributes of NTSMC, fixed-time
control and TDE, a normal control scheme is designed. In this paper, the following design
difficulties need to be solved: (i) How to design a drastically novel terminal sliding surface with
respect to previous proposals available in the literature, and a reaching law to make the upper
bound of the settling time of both reaching phase and sliding mode phase is available, and is
independent of the initial state. (ii) How to design the control law to settle the singularity issue
arising from the drastically novel terminal sliding surface, and guarantee the control input is
nonsingular. (iii) How to design a disturbance observer to estimate and compensate the lumped
uncertainty, including model uncertainties, friction effect and external disturbances from the
port environment, without the upper bound of lumped uncertainty. A robust nonsingular fixed
time terminal sliding mode (RNFTTSM) control scheme with time delay disturbance observer
(TDDO) is proposed for the control of APDL-SM. The contributions are threefold:

1) We develop a novel fixed time terminal sliding surface (FTTSS) that the convergence time of
sliding mode phase has a constant upper bound. The constant upper bound can be designed
by adjusting only one parameter.

2) We propose a new nonsingular fixed time terminal sliding mode (NFTTSM) controller by
combining the fixed-time approach law and the proposed FTTSS. The settling time function
is upper bounded by a priori value that dose not rely on the system initial state but only on
the design parameters. This property implies that the convergence time can be guaranteed
in a prescribed manner.

3) We design a novel robust nonsingular fixed time terminal sliding mode (RNFTTSM) control
scheme to improve the robustness of system by introducing a designed TDDO. The TDDO
could estimate the lumped uncertainty of the system rapidly and accurately.

The rest of the paper is structured as follows: Section 2 provides the modeling process
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of APDL-SM and the problem formulation. The notations and preliminaries in this paper
are given in Section 3. Section 4 contains the main results, which includes the design of
FTTSS, NFTTSM, and RNFTTSM control scheme and the corresponding stability analysis.
The simulation results to verify the proposed methods are presented in Section 5. Finally,
Section 6 concludes this paper.

2 System Modelling and Problem Formulation

In this section, we derive the kinematic model and dynamic model of APDL-SM at first,
and then describe the problem studied in this work mathematically.

2.1 APDL-SM Modeling

As a controlled object in control system, APDL-SM can be divided into three parts in the
mechanical structure: Chassis (CAS), azimuth rotating part (ARP) , and pitch rotating part
(PRP), which are represented by B0, B1, B2, respectively. The structure diagram of APDL-SM
is shown in Figure 1.
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(b)

Figure 1 APDL-SM consists of three parts: CAS (chassis of APDL-SM), ARP (az-

imuth rotating part), and PRP (pitch rotating part). They are represented

by B0, B1, B2, respectively

According to the Denavit-Hartenberg Convention, we establish a link frame for APDL-SM,
then carry out the kinematic and the dynamic modelling, which are derived as follows.

2.1.1 Kinematics Modeling

Considering the mechanical structure of the APDL-SM, it can be schematically represented
from a mechanical viewpoint as a kinematic chain of two rigid bodies (links) connected by two
revolute joints, as shown in Figure 2.

The center of CAS and the central point of the outlet are considered to be the base and
end-effector of the kinematic chain, respectively. The joint connecting B0, and B1 is considered
as Revolute Jiont 1. The joint connecting B1 and B2 is considered as Revolute Jiont 2 which
is located at the intersection of the two rotation axes of B1 and B2 in the actual mechanism.

According to the Denavit-Hartenberg Convention, the link frame for APDL-SM is estab-
lished as shown in Figure 3. The origin of Frame 0 coincides with Revolute Jiont 1. Analo-
gously, the origin of Frame 1 locates at the intersection between z0 and z1. Frame 2 denotes
the end-effector frame. O2′ denotes the intersection between y2 and z1.
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Figure 2 Kinematic Chain
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Figure 3 Link frame

On this basis, the Denavit-Hartenberg parameters are specified in Table 1.

Table 1 DH parameters for APDL-SM

Link ai αi di θi

1 0 π
2

l1 θ1

2 l3 0 l2 θ2

The homogeneous transformation matrices are computed by

A1
0 = A1

0(θ1) =

⎡
⎢⎢⎢⎢⎢⎣

c1 0 s1 0

s1 0 −c1 0

0 1 0 l1

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

, A2
1 = A2

1(θ2) =

⎡
⎢⎢⎢⎢⎢⎣

c2 −s2 0 l3c2

s2 c2 0 l3s2

0 0 1 l2

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

, (2.1)

where ci denotes cos θi, si denotes sin θi, and l1, l2, l3 denote the distances between O0 and O1,
O1 and O2′ , O2′ and O2, respectively.

Then the direct kinematics describing the position and orientation of Frame 2 with respect
to Frame 0 is given by

T 2
0 = A1

0 · A2
1 =

⎡
⎢⎢⎢⎢⎢⎣

c1c2 −c1s2 s1 l3c1c2 + l2s1

s1c2 −s1s2 −c1 l3s1c2 − l2c1

s2 c2 0 l3s2 + l1

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦

. (2.2)

2.1.2 Dynamic Modeling

For dynamic modeling of APDL-SM with n degrees of freedom (n = 2), two methods exist:
The Euler-Lagrange and the Newton-Euler method. The former approach is energy-based, while
the latter analyzes the forces between each of the links in a recursive manner. Considering the
non-uniform and asymmetric properties of the mechanical structure of APDL-SM, the potential
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energy changes over the elevation angle during the scanning movement, so the Newton-Euler
method is employed.

For the augmented Link i (i.e., Link i plus Joint i) of the kinematic chain (Figure 2) and
its center of mass Ci, the modeling procedure consists of two recursions: a forward recursion
and a backward recursion[45]. Some symbols used in the procedure are given in Table 2.

Table 2 Symbols in dynamic modeling for Link i

Symbol Description

mi mass of augmentedLink i

I i
i inertia tensor of augmentedLink i with reference to Frame i

r i
i−1,i vector from origin of Frame (i−1) to origin of Frame i with reference

to Frame i

r i
i,Ci

vector from origin of Frame i to centre of mass Ci with reference to

Frame i

ω i
i angular velocity of augmentedLink i with reference to Frame i

ω̇ i
i angular acceleration of augmentedLink i with reference to Frame i

v i
i linear velocity of origin of Frame i with reference to Frame i

v̇ i
i linear acceleration of origin of Frame i with reference to Frame i

v i
Ci

linear velocity of centre of mass Ci with reference to Frame i

v̇ i
Ci

linear acceleration of centre of mass Ci with reference to Frame i

f i
i force exerted by Link (i − 1) on Link i with reference to Frame i

ρ i
i moment exerted by Link (i − 1) on Link i with reference to Frame i

τi the moment resulting at the RevoluteJoint i

For the forward recursion, link and rotor velocities and accelerations can be computed
recursively starting from the velocity and acceleration of the base link by using (2.3), (2.4),
(2.5), and (2.6), with known initial conditions ω 0

0 = ω̇ 0
0 = [0 0 0]T,

ω i
i = R i

i−1

T
(ω i−1

i−1 + θ̇iz0), (2.3)

ω̇ i
i = R i

i−1

T
(ω̇ i−1

i−1 + θ̈iz0 + θ̈iω
i−1
i−1 × z0), (2.4)

v̇ i
i = R i

i−1
T
v̇ i−1

i−1 + ω̇i
i × r i

i−1,i + ωi
i × (ωi

i × r i
i−1,i), (2.5)

v̇ i
Ci

= v̇ i
i + ω̇i

i × r i
i,Ci

+ ωi
i × (ωi

i × r i
i,Ci

), (2.6)

where z0 is the unit vector of the rotational axis of revolute joint, i.e., z0 = [0 0 1]T, Ri
i−1

is the rotation matrix from Frame (i − 1) into Frame i, which can be calculated based on
Denavit-Hartenberg parameters:

R1
0 =

⎡
⎢⎢⎣

c1 0 s1

s1 0 −c1

0 1 0

⎤
⎥⎥⎦ , R2

1 =

⎡
⎢⎢⎣

c2 −s2 0

s2 c2 0

0 0 1

⎤
⎥⎥⎦ .
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Having computed the velocities and accelerations with the forward recursion from the base
link to the end-effector, the Newton-Euler equations can be utilized to find the forces and
moments acting on each link in a backward recursion as (2.7), (2.8), (2.9), starting from the
force and moment applied to the end-effector, i.e., f n+1

n+1 = ρ n+1
n+1 = [0 0 0]T for n = 2.

f i
i = Ri+1

i f i+1
i+1 + mi v̇

i
Ci

, (2.7)

ρi
i = −f i

i × (r i
i−1,i + r i

i,Ci
) + Ri+1

i ρi+1
i+1 + R i+1

i f i+1
i+1 × r i

i,Ci
+ I i

i ω̇ i
i + ωi

i × (I i
i ωi

i), (2.8)

τi = ρi
i

T
Ri

i−1

T
z0. (2.9)

After the above calculations, the dynamic model of APDL-SM is established as follows:

M(θ) θ̈ + C(θ, θ̇) θ̇ + G(θ) = τ + τd, (2.10)

in which vectors θ, θ̇, θ̈ ∈ R
2, θ = [θ1, θ2]T denotes the joint positions, velocities, and ac-

celerations of APDL-SM, respectively. M(θ) ∈ R
2×2 is a positive definite inertia matrix,

C(θ, θ̇) ∈ R
2×2 is the centripetal Coriolis matrix, G(θ) ∈ R

2 is the gravitational vector,
τ = [τ1, τ2]T ∈ R

2 is the joint torque input vector generated by the electrical motors connected
to the CAS and ARP of APDL-SM, and τd is the external disturbance torque vector.

The parameters of APDL-SM are given as follows: m1 = 100 kg, m2 = 46.5 kg, r1
0,1 =

[0 , 0.18 , 0]T, r2
1,2 = [0 , 0.18 , 0.4]T, r 1

1,C1
= [0 , 0.16 , 0]T, r 2

2,C2
= [0 , −0.14 , 0]T. The

inertia tensors of augmented Link 1 and augmented Link 2 are

I 1
1 =

⎡
⎢⎢⎣
5 0 0

0 5 −1.2

0 −1.2 3.2

⎤
⎥⎥⎦ , I 2

2 =

⎡
⎢⎢⎣
2 0 0

0 1.3 0.2

0 0.2 2

⎤
⎥⎥⎦ .

Therefore, three nominal matrices in (2.10) are presented as

M0(θ) =

⎡
⎣9.51 sin2 θ2 + 8.74 cos2 θ2 + 5 −0.544 cosθ2

−0.544 cosθ2 2.07

⎤
⎦ , (2.11)

C0(θ, θ̇) =

⎡
⎣ 1.55 sin θ2 cos θ2 · θ̇2 0.54 sin θ2 · θ̇2

−0.77 sin θ2cosθ2 · θ̇1 0

⎤
⎦ , (2.12)

G0(θ) =

⎡
⎣ 0

−18.23 sinθ2

⎤
⎦ . (2.13)

2.2 Problem Formulation

Considering the modeling uncertainties caused by the asymmetric structural characteristics
of APDL-SM, the dynamic equation (2.10) of APDL-SM in the joint space can be expressed as

M0(θ) θ̈ + C0(θ, θ̇) θ̇ + G0(θ) = τ + Fd(θ, θ̇, θ̈), (2.14)
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where M0(θ), C0(θ, θ̇), G0(θ) denote the nominal values, and Fd(θ, θ̇, θ̈) = τd − ΔM(θ)θ̈ −
ΔC(θ, θ̇)θ̇ − ΔG(θ) is the lumped disturbance. ΔM(θ), ΔC(θ, θ̇), ΔG(θ) stand for the system
perturbations, and τd ∈ R

2 is external disturbances vectors.
The following assumptions are considered for APDL-SM.

Proposition 1 (see [46]) The inertia matrix M0(θ) is positive-definite symmetrical and
bounded such that:

λmin(M0) I2×2 ≤ M0(θ) ≤ λmax(M0) I2×2,

where λmin(M0) and λmax(M0) are the minimum and maximum eigenvalues of the known inertia
matrix M0(θ) respectively, and I2×2 is a 2×2 identity matrix.

Proposition 2 The matrix Ṁ0(θ) − 2C0(θ, θ̇) is skew symmetric.

Let θd(t) ∈ R
2 be the desired positon azimuth and pitch of the APDL-SM, then the tracking

error can be denoted as e(t) = [e1(t), e2(t)]T ∈ R
2×2, e1(t) = θ(t) − θd(t), and e2(t) =

θ̇(t) − θ̇d(t). The control objective of this paper is to design a nonsingular SMC for APDL-
SM, such that the tracking error e(t) can converge to zero within a fixed amount of time,
even if APDL-SM is under the effect of unmodeled dynamics, friction vibration and external
disturbances:

lim
t→tc

‖e(t)‖ = 0, (2.15)

where tc = tr + ts is the total settling time of reaching phase and sliding mode phase, and it is
available and independent of the initial state.

To solve these problems, let x1(t) = θ(t) ∈ R
2, x2(t) = θ̇(t) ∈ R

2, x(t) = [x1(t), x2(t)]T ∈
R

2×2, based on the state space form in [43], APDL-SM dynamic equation (2.14) can be rewritten
as:

ẋ1(t) = x2(t),

ẋ2(t) = f(t, x) + g(t, x)u + d(t, x), (2.16)

where f(t, x) = M0
−1(x1)

[ − C0(x1, x2)x2 − G0(x1)
]
, g(t, x) = M0

−1(x1), and d(t, x) =
M0

−1(x1) · Fd(x1, x2, ẋ2). u = τ is the control input. The following assumptions are imposed
on system.

Assumption 1 The desired trajectory θd(t) and its first and second-order derivative are
known and bounded.

Assumption 2 The lumped uncertainty term d(t, x) is bounded by a known function:

‖ d(t, x) ‖ ≤ Ξ (x) , ∀(t) ≥ 0, ∀(x) ∈ R
2×2. (2.17)

Assumption 3 The angular position θ(t), angular velocity θ̇(t) and angular acceleration
θ̈(t) are available.
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3 Notations and Preliminaries

3.1 Notations

R denotes the set of real numbers. R
+ denotes the set of positive real numbers. R

n represents
the set of n column vectors. R

n×n represents the set of n × n matrices.
As for a vector a = [a1, a2, · · · , an]T ∈ R

n , define the absolute value of a as |a| =[|a1|, |a2|, · · · , |an|
]T ∈ R

n, where | · | denotes the absolute value of a scalar. The norm of
vector a is defined as the Euclidean norm, i.e., ‖a‖ =

√
aTa. For the signum function sgn(·)

and a constant γ, define:
aγ =

[
a1

γ , a2
γ , · · · , an

γ
]T ∈ R

n

sgn(a) =
[
sgn(a1), sgn(a2), · · · , sgn(an)

]T ∈ R
n,

	a
γ :=
[|a1|γsgn(a1), |a2|γsgn(a2), · · · , |an|γsgn(an)

]T ∈ R
n,

�a�γ := diag
(
|a1|γsgn(a1), |a2|γsgn(a2), · · · , |an|γsgn(an)

)
∈ R

n×n,

(a + 1)γ :=
[
(a1 + 1)γ , (a2 + 1)γ , · · · , (an + 1)γ

]T ∈ R
n,

〈a + 1〉γ := diag
(
(|a1| + 1)γ , (|a2| + 1)γ , · · · , (|an| + 1)γ

)
∈ R

n×n.

As for a matrix X ∈ R
m×n, ‖X‖ represents the Euclidean norm, X� denotes the column

vector of the sum of the absolute values of the elements in each row, i.e.,

X� :=

[
n∑

j=1

|x1j |,
n∑

j=1

|x2j |, · · · ,

n∑
j=1

|xmj |
]T

∈ R
n.

3.2 Preliminaries

Consider the following differential equation system:

ẋ(t) = F (x(t)), x(0) = x0, (3.1)

where x ∈ R
N , F (x) : R+ × R

N → R
N is a nonlinear function. Suppose that the origin is an

equilibrium point of (3.1).

Definition 1 (see [47]) The origin of the system (3.1) is a finite-time stable equilibrium
if the origin is Lyapunov stable and there exists a function T : R

N → R+, called the settling
time function, such that for every x0 ∈ R

N . The solution x(t, x0) of the system (3.1) is defined
on [0, T (x0)), with x(t, x0) ∈ R

N for all t ∈ [0, T (x0)), and limt→Tx0
x(t, x0) = 0.

Definition 2 (see [47]) The origin of (3.1) is said to be a fixed-time stable equilibrium
point if it is globally finite-time stable with bounded settling time T (x0), i.e., ∃ Tmax > 0 such
that T (x0) < Tmax, ∀x0 ∈ R

N .

Lemma 1 (see [48]) Consider a scalar system

ẏ = −α y
m
n − β y

p
q , y(0) = y0, (3.2)

where α > 0, β > 0, and m, n, p, q are positive odd integers satisfying m > n and p > q. Then
the equilibrium of (3.2) is fixed-time stable and the settling time T is bounded by

T < Tmax � 1
α

n

m − n
+

1
β

q

q − p
. (3.3)
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4 Control Scheme Design and Stability Analysis

It consists of two parts: NFTTSM controller and the RNFTTSM control scheme, which
combines NFTTSM with a time delay distuebance observer (TDDO). They will be introduced
in detail respectively as follows.

4.1 FTTSS

First of all, a new fixed time terminal sliding surface (FTTSS) is designed as:

σ(e) = e2 + 2β �e1�
1
2 (|e1| + 1)

3
2 , (4.1)

where β = diag(β1, β2) is a positive definite matrix.

Theorem 1 Consider the tracking error dynamic system (2.14) with our proposed FTTSS
(4.1) satisfying σ = 0. Then e1 = 0 and e2 = 0 can be reached in a fixed time ts, whose upper
bound can be estimated as

ts ≤ Ts = (β−1)
�
. (4.2)

Proof Once a sliding motion is established on the surface σ = 0, the dynamics of the
variable e1(t) are governed by

ė1 = −2β �e1�
1
2 (|e1| + 1)

3
2 . (4.3)

Considering ė1 = de1
dt , Equation (4.3) can be written as

de1

dt
= −2β �e1�

1
2 (|e1| + 1)

3
2 , (4.4)

− β dt =
1
2
�e1�−

1
2 (|e1| + 1)−

3
2 de1. (4.5)

To solve the differential equation (4.5), integrate both sides of this equation at first, then
(4.5) can be written as

∫
dt = −(2β)−1

∫
�e1�−

1
2 (|e1| + 1)−

3
2 de1, (4.6)

ts − t0 = −(2β)−1

∫
|e1|−

1
2 (|e1| + 1)−

3
2 d(|e1|), (4.7)

ts = −β−1

∫
(|e1| + 1)−

3
2 d(|e1| 12 ). (4.8)

Let |e1| 12 = tan z, then we have

z = arctan(|e1| 12 ), (4.9)

(|e1| + 1)−
3
2 = (tan2 z + 1)−

3
2 =

(
sin2 z

cos2 z
+ 1

)− 3
2

=
(

1
cos2 z

)− 3
2

= cos3 z. (4.10)
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Substituting (4.9) into (4.8), the convergence time ts of sliding mode phase is

ts = − β−1

∫
cos3 z d(tan z) (4.11)

= − β−1

∫
cos z dz (4.12)

= − β−1(sin z − sin z0). (4.13)

Considering z = arctan(|e1| 12 ), substitute it into (4.13), then we have

ts = −β−1
[
sin

(
arctan(|e1(ts)| 12 )

)− sin
(
arctan(|e1(t0 = 0)| 12 )

)]
. (4.14)

Since the end state of sliding mode phase is e1(ts) = 0 and e1(0) represents the initial state,
(4.14) can be written as

ts = β−1 sin
(
arctan(|e1(0)| 12 )

)
. (4.15)

Due to sin(arctanγ) = γ√
1+γ2

, (4.15) is equal to

ts = β−1 |e1(0)| 12 (|e1(0)| + 1)−
1
2 . (4.16)

Consider that the upper bound of both elements in the vector |e1(0)| 12 (|e1(0)| + 1)−
1
2 is 1,

therefore, once the sliding surface is attained, the states e1, e2 can reach the origin within a
fixed time with the upper bound Ts:

ts =β−1 |e1(0)| 12 (|e1(0)| + 1)−
1
2 ≤ β−1 (4.17)

=⇒ ts ≤ Ts = (β−1)
�
. (4.18)

Because there are two rotation angles to be controled, each of them can be designed the
upper bound of convergence time separately. Therefore, (·)� denotes the column vector of a
matrix, which calculates the sum of the absolute values of the elements in each row.

4.2 NFTTSM Controller

Considering Assumption 3 that the angular position θ(t) and angular velocity θ̇(t) are both
available, we design a controller for the system (2.14) such that the desired trajectory can be
reached in fixed time, which means that the total convergence time is independent of initial
states.

According to the terminal sliding mode design procedure, the nonsingular fixed time terminal
sliding mode controller is designed as

u = ueq + ure, (4.19)

where ueq is used to control nominal component, and ure is introduced to deal with the uncer-
tainty. ueq can be obtained by solving the equation σ̇ = 0 with d(t, x) = 0

ueq = −g−1(t, x)
[
f(t, x) + 4β�e1�

1
2 〈e1 + 1〉 1

2 e2 + sat
(
β�e1�−

1
2 〈e1 + 1〉 1

2 e2, h
)]

. (4.20)
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In (4.20), a saturation function is applied to handle the singularity by limiting the amplitude
of singularity term �e1�−

1
2 , and the saturation function can be defined as

sat(x, y) =

⎧
⎨
⎩

x, if |x| < y,

y ·sgn(x), if |x| ≥ y.
(4.21)

To guarantee the fixed-time convergence to the sliding surface, revisit Lemma 1 and then
design the reaching law:

σ̇ = −k1 σ
p
q − k2 σ

m
n − Ξ (x)sgn(σ), (4.22)

where k1 = diag(k11, k12), k2 = diag(k21, k22) are positive definite matrix, m, n, p, q are positive
odd integers satisfying m > n and p < q. Therefore, we can obtain ure as

ure = −g−1(t, x)
[
k1 σ

p
q + k2 σ

m
n + Ξ (x)sgn(σ)

]
. (4.23)

Theorem 2 Considering the dynamic system (2.16) satisfying Assumptions 1, 2, 3, the
sliding mode σ and the tracking errors e1 and e2 will converge to the origin within a fixed time
via the proposed FTTSS (4.1) and NFTTSM controller (4.19), (4.20), (4.23), and the settling
time tc is bounded by

tc ≤ Tc =
(

β−1 +
n

m − n
k1

−1 +
q

q − p
k2

−1

)�

. (4.24)

Proof Consider the following Lyapunov candidate function as

V1 =
1
2

σTσ. (4.25)

The time derivative of V1 can be obtained as V̇1 = σTσ̇, and yields

V̇1 = σT
[
f(t, x) + g(t, x)u + d(t, x) + 4β�e1�

1
2 〈e1 + 1〉 1

2 e2 + β�e1�−
1
2 〈e1 + 1〉 1

2 e2

]
. (4.26)

Substituting the NFTTSM controller (4.19), (4.20), (4.23) into (4.26), we have

V̇1 = −σT
[
k1σ

p
q + k2σ

m
n + Ξ (x)sgn(σ) − d(t, x) + sat(Γ , h) − Γ

]

= −σT
[
k1σ

p
q + k2σ

m
n

]
− σT

[
Ξ (x)sgn(σ) − d(t, x)

]
− σT

[
sat(Γ , h) − Γ

]

≤ −λmin(k1)V
p+q
2q − λmin(k2)V

m+n
2n − ‖σ‖[Ξ (x) − ‖d(t, e)‖]− ‖σ‖ [‖sat(Γ , h)‖ − ‖Γ‖]

= −λmin(k1)V
p+q
2q − λmin(k2)V

m+n
2n − ‖σ‖ · μ − ‖σ‖ · ν, (4.27)

where Γ = β�e1�−
1
2 〈e1 + 1〉 1

2 e2, μ = Ξ (x) − ‖d(t, x)‖, ν = ‖sat(Γ , h)‖ − ‖Γ‖, λmin(ki) denotes
the minimum eigenvalue of the positively definite matrix ki, therefore, we have

−λmin(k1)V
p+q
2q − λmin(k2)V

m+n
2n < 0. (4.28)

According to (2.17), one has μ = Ξ (x) − ‖d(t, x)‖ > 0 so that it yields

−‖σ‖· μ < 0. (4.29)



RNFTTSMC FOR APDL SCANNING MECHANISM 513

To confirm the sign of −‖σ‖· ν, define the singularity area Ω as the region where inequality
|Γ | ≥ h holds. The following analysis will be divided into two cases.

For the case of |Γ | < h, on the basis of (4.21), we have sat(Γ , h) = Γ , which gives rise to
ν = ‖sat(Γ , h)‖ − ‖Γ‖ = 0, thus −‖σ‖· ν < 0. Based on the (4.28) and (4.29), it is concluded
that V̇1 < 0, so that it is asymptotically stable.

For the case of |Γ | ≥ h, the tracking error e1(t) can be obtained by e1(t) = e1(0)+
∫ t

0
e2(τ)dτ .

If e2(t) > 0 holds, e1(t) will increase monotonically and leave the singularity area Ω . If e2 (t < 0)
holds, e1(t) will decrease monotonically and also leave the singularity area. Both situations
prove that the system lies in the singularity region transiently. Therefore, the existence of
singularity region does not influence the results of the stability analysis.

According to Lemma 1 and the reaching law in (4.22), the system (2.16) reaches the sliding
surface within a bounded time, and the bound of convergence time can be estimated by

tr ≤ Tr =
(

n

m − n
k1

−1 +
q

q − p
k2

−1

)�

. (4.30)

When the system reaches the sliding surface σ = 0, recalling Theorem 1 yields that the state
variable e1(t) can be stabilized within a finite time bounded by

ts ≤ Ts = (β−1)
�
. (4.31)

When state variable e1(t) settles down to the origin, the state variable e2(t) also converges
to zero. Consequently, the convergence time for the system (2.16) can be estimated as

tc = tr + ts ≤ Tr + Ts =
(

β−1 +
n

m − n
k1

−1 +
q

q − p
k2

−1

)�

. (4.32)

The proof is completed.

Remark 1 In order to guarantee that σ = 0 lies outside the singularity area Ω , as pointed
out in [47], the parameter h in control law (4.20) can be set to satisfy

h > β�e1 max�−
1
2 〈e1 max + 1〉 1

2 ·
(
2β �e1max�

1
2 (|e1max| + 1)

3
2

)
(4.33)

=⇒ h > 2β2 · (|e1 max| + 1
)2

, (4.34)

where e1max denotes the maximum of |e1|.
Remark 2 In the proposed controller (4.19), (4.20), (4.23), the design procedure is based

on the assumption that the upper bound function Ξ (x) of the unknown function d(t, x) can
be obtained in advance. However, this approach limits its applications because the exact up-
per bound function is difficult to obtain beforehand in real world. In order to overcome this
drawback, a TDDO will be developed in the next section, and the RNFTTSM control scheme
is proposed as a result.
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4.3 RNFTTSM

In this section, we propose a robust nonsingular fixed time terminal sliding mode (RN-
FTTSM) contol scheme based on a time delay disturbance observer (TDDO). Another assump-
tion is made as follows.

Assumption 4 The lumped uncertainty term d(t, x) is continuous over time t and con-
tinuously differentiable with respect to the time variable, and do not vary largely during a small
period TL of time.

According to the above assumption, the lumped uncertainty term d(t, x) can be considered
as a continuous function, and thus the following approximation is satisfied based on TDE
technique:

d(t, x) ∼= d(t − TL, x). (4.35)

Consequently, the estimation of the d(t, e) can be obtained, that is,

d̂(t, x) � d(t − TL, x), (4.36)

where d̂(t, x) is the estimation of lumped uncertainty d(t, x) at the time t.

Remark 3 In practice, the smallest achievable TL is the sampling period in digital im-
plementation. A digital control system behaves reasonably close to the continuous system if
the sampling rate is faster than 30 times the system bandwidth[49]. Hence, with a TL smaller
than this level, the continuous lumped uncertainty d(t, e) can be estimated by using the TDE.

From the dynamic system (2.16) and (4.36), the TDDO can be obtained as

d̂(t, x) � d(t − TL, x) = ẋ2(t − TL) − f(t − TL, x) −
(
g(t − TL, x)u

)
= dTDDO , (4.37)

where
f(t − TL, x) =

{
M0

−1(x1)
[− C0(x1, x2)x2 − G0(x1)

]}∣∣∣
t−TL

and
g(t − TL, x) =

{
M0

−1(x1)
}∣∣∣

t−TL

.

From (4.35), (4.37), the unknown lumped uncertainty function can be described by the
proposed TDDO with the observation error δ as

d(t, x) = dTDDO + δ, (4.38)

where δ is the observation error. Based on the analyses in [50, 51], the assumption below is
reasonable for a sufficiently small TL.

Assumption 5 There exists a positive constant δ such that |δ| ≤ δ, and δ is a known
upper bound of TDDO error.

From (4.38), the dynamic system described in (2.16) can be rewritten as

ẋ1(t) = x2(t),

ẋ2(t) = f(t, x) + g(t, x)u + dTDDO + δ. (4.39)
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For this system, the derivative of the sliding surface σ defined in (4.1) can be rewritten as

σ̇ =f(t, x) + g(t, x)u + dH−TDDO + δ

+ 4β�e1�
1
2 〈e1 + 1〉 1

2 e2 + β�e1�−
1
2 〈e1 + 1〉 1

2 e2. (4.40)

Then the RNFTTSM control scheme is now designed based on TDDO to accommodate
unmodeled dynamics, friction vibration and external disturbances.

u = ueq + uTDDO + ure, (4.41)

where ueq is designed as the same as (4.20):

ueq = −g−1(t, x)
[
f(t, x) + 4β�e1�

1
2 〈e1 + 1〉 1

2 e2 + sat
(
β�e1�−

1
2 〈e1 + 1〉 1

2 e2, h
)]

. (4.42)

The lumped uncertainty compensation term based on TDDO is

uTDDO = −g−1(t, x) dTDDO (4.43)

and ure is designed as

ure = −g−1(t, x)
[
k1 σ

p
q + k2 σ

m
n + δ ·sgn(σ)

]
. (4.44)

The parameters in (4.44) have the same definitions in (4.23). And the stability of the system
under the proposed RNFTTSM control scheme in (4.43) is demonstrated as follows.

Theorem 3 Considering the APDL-SM dynamic system (4.39) under Assumption 1 to
Assumption 5, the sliding mode σ and the tracking errors e1 and e2 will converge to the origin
within a fixed time via the proposed FTTSS (4.1) and RNFTTSM control law (4.41), (4.42),
(4.43), (4.44).

Proof Let the Lyapunov candidate function be

V2 =
1
2

σTσ. (4.45)

Differentiating V2 with respect to time and substitute (4.40) into it, we have

V̇2 = σTσ̇

= σT
[
f(t, x) + g(t, x)u + (dTDDO + δ)

+ 4β�e1�
1
2 〈e1 + 1〉 1

2 e2 + β�e1�−
1
2 〈e1 + 1〉 1

2 e2

]
, (4.46)

then, substitute the RNFTTSM control law (4.41) to (4.44) into above, it yields

V̇2 = −σT
[
sat(Γ , h) − Γ + k1σ

p
q + k2σ

m
n + δ ·sgn(σ) − δ

]

= −σT
[
k1σ

p
q + k2σ

m
n

]− σT
[
δ ·sgn(σ) − δ

]− σT
[
sat(Γ , h) − Γ

]

≤ −λmin(k1)V
p+q
2q − λmin(k2)V

m+n
2n − ‖σ‖

[
‖sat(Γ , h)‖ − ‖Γ‖

]

= −λmin(k1)V
p+q
2q − λmin(k2)V

m+n
2n − ‖σ‖ · ν, (4.47)



516 KANG YU, et al.

where Γ and ν have the same definations as (4.27).
Based on (4.47) and the proof for Theorem 1, we can verify that the trajectories of (4.1) and

the tracking errors e1 and e2 will converge to the origin within fixed time without singularity
under the control law defined in (4.41) to (4.44). This completes the proof for Theorem 3.

Remark 4 Considering that the proposed control laws (4.23) and (4.44) consist the
signum function sgn(·), the chattering is inevasible in the system. However, the chattering
amplitude is related to the upper bound of lumped uncertainty or the upper bound of TDDO
error. Therefore, the chattering can be reduced to the acceptable limits due to TDDO, and the
proposed methods can used in APDL-SM system.

5 Comparative Study and Discussion

To demonstrate the effectiveness of the proposed RNFTTSM control schemes, numerical
simulations for the azimuth and pitch angle of the APDL-SM to track a given desired trajectory
are carried out under the proposed control scheme.

In this section, NFTTSM (4.19) and the adaptive SOFNTSM controller (see [52]) are con-
sidered in simulations for the purpose of comparison to demonstrate the superiority of the
RNFFTSM controller (4.41) more clearly.

Rewrite the dynamic equation of APDL-SM (2.14) as follows:

M0(θ) θ̈ + C0(θ, θ̇) θ̇ + G0(θ) = τ + Fd(θ, θ̇, θ̈), (5.1)

where the three nominal matrices are presented as

M0(θ) =

⎡
⎣9.51 sin2 θ2 + 8.74 cos2 θ2 + 5 −0.544 cosθ2

−0.544 cosθ2 2.07

⎤
⎦ , (5.2)

C0(θ, θ̇) =

⎡
⎣ 1.55 sin θ2 cos θ2 · θ̇2 0.54 sin θ2 · θ̇2

−0.77 sin θ2cosθ2 · θ̇1 0

⎤
⎦ , (5.3)

G0(θ) =

⎡
⎣ 0

−18.23 sinθ2

⎤
⎦ . (5.4)

The desired trajectory for azimuth and pitch angle of APDL-SM are selected as

θd =

⎡
⎣1.45 − 1.4e−t + 0.6e−4t

1.25 + e−t − 0.5e−4t

⎤
⎦ . (5.5)

The unmodeled dynamics including parametric uncertainties is chosen as 0.2 times the
normal dynamics, while the external disturbances follows

τd =

⎡
⎣ 2 sint + 0.5 sin (200 πt)

cos(2t) + 0.5 sin (200 πt)

⎤
⎦ . (5.6)
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The comparative simulations of RNFTTSMC, NFTTSMC and the adaptive SOFNTSM
controller are conducted with the same initial conditions x(0)1 = [0.2, 2.1, 0,−0.1]T. The pa-
rameters of RNFTTSM and NFTTSM controller are selected as k1 = 0.5, k2 = 1, m = 5, n =
3, p = 1, q = 9, β1 = β2 = 8. Besides, to verify the fixed time convergence of NFTTSMC,
another four initial states are considered x(0)1 = [0.2, 2.1, 0,−0.1]T, x(0)2 = [0.8, 3, 0.5, 0.5]T,
x(0)3 = [1.2, 0.2,−0.4, 1.4]T, x(0)4 = [1.5, 1.3, 0.1, 6]T, x(0)5 = [−0.4, 2.3,−0.2,−3]T. Under
the above settings, the angle and angular velocity tracking performances of ARP and PRP un-
der three controller are depicted from Figures 4–7. Each and every component in contributions
are illustrated as follows with a clear explanation about the simulation results with respect to
each figure.

1) Tracking performance of RNFTTSM control scheme.
By comparing the responses under the RNFTTSM controller (red line) and the SOFTNSM

controller (magenta line) from Figures 4–7, it is observed that the overshoot of the proposed
RNFTTSM controller is smaller than the SOFTNSM controller, and the convergence rate of
RNFTTSM controller is also faster than the SOFNTSMC. By contrasting the response curves
under the RNFTTSM controller (red line) and the NFTTSM controller in five different cases
of initial states x(0), we can find that the settling time of the proposed RNFTTSMC and the
proposed NFTTSMC controller is much the same. This is because the two controllers have the
same basic control structure with identical parameters. However, the response curves of angle
and angular velocity tracking of PRP under NFTTSM controller have a fluctuation after the
system reaching a plateau. This phenomenon shows that RNFTTSM controller has a stronger
robustness than NFTTSM, due to the TDDO module imported in RNFTTSM estimating the
unknow lumped uncertainty.

2) Fixed time convergence of NFTTSM controller.
Based on the results in Theorem 1 and Theorem 2, the upper bound of the convergence

time during reaching phase and sliding mode phase can be calculated by NFTTSM controller

q 1
q 2

x(0)

x(0)
x(0)
x(0)
x(0)

Figure 4 Angle tracking trajectory of ARP and PRP in APDL-SM under three controllers
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x(0)
x(0)
x(0)
x(0)
x(0)

e 1
e 2

Figure 5 Angle tracking errors trajectory of ARP and PRP in APDL-

SM under three controllers

parameters as tr ≤ Tr = n
m−nk1

−1 + q
q−pk2

−1 = 3.75 s and ts ≤ Ts = β(−1) = 0.125 s. As a
consequence, the total setting time tc can be estimated as tc ≤ Tc = Tr+Ts = 3.875 s. From the
curves of five different initial states under NFTTSMC in Figures 4 and 5, it is observed that
the proposed NFTTSM controller has fast global convergence speed and the tracking errors
decrease to zero promptly. The convergence time under the proposed NFTTSM controller is
smaller than 1.5 s, which is much less than the calculated upper bound value before. Therefore,
the settling time is independent to the initial states and designable by human, which is satisfied
the property of fixed-time convergence. In Figures 6 and 7, the angular velocity and its tracking
error trajectory are showed. The results prove the same property of fixed-time convergence for
velocity tracking error.

dq
1

dq
2

x(0)
x(0)
x(0)
x(0)
x(0)

Figure 6 Angular velocity tracking trajectory of ARP and PRP in

APDL-SM under three controllers
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x(0)
x(0)
x(0)
x(0)
x(0)

de
2

de
1

Figure 7 Angular velocity tracking errors trajectory of ARP and

PRP in APDL-SM under three controllers

3) One parameter determines the upper bound of settling time on FTTSS.
Considering that the convergence time of sliding mode phase is difficult to be observed

intuitively in the whole tracking process, an extra easy numerical simulation on sliding mode
phase is constructed to verify that the constant upper bound of settling time is designed by
only one parameter. Sliding mode phase is from the beginning of σ = 0 to the moment that the
states settle to the origin of system. Therefore, on the basis of Theorem 1, assign the parameter
β in FTTSS with diag(2, 4). The initial states of positon tracking error on sliding surface are
set as e1(0) = [3,−1]T. The results are shown in Figure 8(a). It can be observed that the
convergence time for position tracking error of azimuth angle e11 and pitch angle e12 is less
than β−1

1 = 0.5 s and β−1
2 = 0.25 s, respectively. Consequently, it verified that the convergence

time of sliding mode phase has the upper bound β−1. When set β = diag(5, 8), the states
curves are shown in Figure 8(b). Theorem 1 can be verified agian. As a consequence, it is clear
that the convergence time of the position tracking error on sliding mode phase can be modified
optionally by changing the parameter β of our proposed FTTSS.

e 1

t

(a) when β = diag(2, 4)
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e 1

t

(b) when β = diag(5, 8)

Figure 8 Convergence time of sliding mode phase

6 Conclusion

To ensure a high-precision trajectory tracking control of APDL-SM under model uncer-
tainty and lumped external disturbance, a novel RNFTTSM control scheme has been proposed
and investigated in this paper. The proposed method mainly consists of three parts: (i) The
FTTSS to provide the initial-state-independent convergence and designable convergence time in
the sliding mode phase, (ii) the NFTTSM controller with the fixed time reaching law to achieve
the fixed-time stability and a settling time estimate for the reaching phase, and (iii) the TDDO
part to compensate the impact of model uncertainty and external disturbance on tracking per-
formance and to improve the robustness of the tracking system. The stability of the closed-loop
control system is analyzed by using Lyapunov method. Finally, the validity and superiorities of
our proposed FTTSS, NFTTSM, and RNFTTSM control scheme are verified through simula-
tion experiments. Although the proposed RNFTTSM control scheme achieves a high-precision
trajectory tracking performance under the model uncertainty and lumped external disturbance,
there is still a deficiency for us to improve in the future work. The convergence time of both
reaching phase and sliding mode phase is designable, but the actual tracking speed is restricted
by the upper limit of the torque provided by the actuators. As a consequence, how to balance
the designable convergence time with the actuators saturation is an important problem for us
to study.
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